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ABSTRACT
Dehazing is an image enhancing technique that emerged in the
recent years. Despite of its importance there is no dataset to
quantitatively evaluate such techniques. In this paper we introduce
a dataset that contains 1400+ pairs of images with ground truth
reference images and hazy images of the same scene. Since due to
the variation of illumination conditions recording such images is
not feasible, we built a dataset by synthesizing haze in real images
of complex scenes. Our dataset, calledD-HAZY , is built on the
Middelbury [1] and NYU Depth [2] datasets that provide images of
various scenes and their corresponding depth maps. Due to the fact
that in a hazy medium the scene radiance is attenuated with the
distance, based on the depth information and using the physical
model of a hazy medium we are able to create a corresponding
hazy scene with high fidelity. Finally, using D-HAZY dataset, we
perform a comprehensive quantitative evaluation of several state of
the art single-image dehazing techniques.

Index Terms— dehazing, depth, quantitative evaluation

I. INTRODUCTION

Image dehazing, a typical image enhancement technique studied
extensively in the recent years, aims to recover the original light
intensity of a hazy scene. While earlier dehazing approaches
employ additional information such as multiple images [3] or a
rough estimate of the depth [4], recent techniques have tackled
this problem by using only the information of a single hazy input
image [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16]. The existing techniques restore the latent image assuming
the physical model of Koschmieder [17]. Since dehazing problem
is mathematically ill-posed there are various strategies to estimate
the two unknowns: the airlight constant and the transmission map.

Fattal [5] employs a graphical model that solves the ambiguity of
airlight color assuming that image shading and scene transmission
are locally uncorrelated. Tan’s method [6] maximizes local contrast
while constraining the image intensity to be less than the global
atmospheric light value. He et al. [7], [18] introduce a powerful
approach built on the statistical observation of the dark channel,
that allows a rough estimation of the transmission map, further
refined by an alpha matting strategy [19]. Tarel and Hautière [8]
introduce a filtering strategy assuming that the depth-map must
be smooth except along edges with large depth jumps. Kratz and
Nishino [9] propose a Bayesian probabilistic method that jointly
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Fig. 1. D-HAZY dataset provides ground truth images and the
corresponding hazy image derived from the depth map (known). In
the bottom row are shown results yielded by several recent dehazing
techniques [18], [12], [21].

estimates the scene albedo and depth from a single degraded
image by fully leveraging their latent statistical structures. Ancuti et
al. [10] describe an enhancing technique built on a fast identification
of hazy regions based on thesemi-inverseof the image. Ancuti and
Ancuti [12] introduce a multi-scale fusion procedure that restore
such hazy image by defining proper inputs and weight maps. The
method has been extended recently by Choi et al. [20]. Meng
et al. [21] propose a regularization approach based on a novel
boundary constraint applied on the transmission map. Fattal [13]
presents a method inspired from color-lines, a generic regularity in
natural images. Tang et al. [16] describe a framework that learns a
set of feature for image dehazing.

There have been a few attempts to quantitatively evaluate de-
hazing methods. All of them have been defined as non-reference
image quality assessment (NR-IQA) strategies. Hautiere et al. [22]
propose a blind measure based on the ratio between the gradient
of the visible edges between the hazy image and the restored
version of it. Chen et al. [23] introduce a general framework for
quality assessment of different enhancement algorithms, including
dehazing methods. Their evaluation was based on a preliminary
subjective assessment of a dataset which contains source images
in bad visibility and their enhanced images processed by different
enhancement algorithms. Moreover, general non reference image
quality assessment (NR-IQA) strategies [24], [25], [26] have not
been designed and tested for image dehazing.

However, none of these quality assessment approaches have
been commonly accepted and as a consequence a reliable data set
for dehazing problem is extremely important. Unlike other image
enhancing problems for dehazing task capturing a valid ground



truth image is not trivial. The procedure to record both the reference
(haze-free) and the hazy image in the same illumination condition
is generally intractable. The FRIDA dataset [27] designed for
Advanced Driver Assistance Systems (ADAS) is a synthetic image
database (computer graphics generated scenes). It contains 66 roads
synthesized scenes and besides the reduced level of generality and
complexity of the scenes as a computer-generated dataset some
parameter settings are not valid for real scenarios.

In this paper we introduce a novel dataset that allows to quan-
titatively evaluate the existing dehazing techniques. Our dataset
contains 1400+ images of real complex scenes. In order to generate
the hazy images we use the extendedMiddleburry1 dataset that
contains high quality real scenes and corresponding depth map.
Moreover, we improve our dataset using recentNYU-Depth V22, a
large dataset that includes various indoor scenes with RGB and
depth maps captured by a Microsoft Kinect sensor. Employing
the Koschmieder’s physical model [17] of light transmission in
hazy scenes, assuming uniform atmospheric intensity and uniform
haze density, and using the reference depth map available from
the dataset, we are able to synthesize haze in the considered
scenes. Even if the strict validity of the Koschmieder model is
arguable in arbitrary illumination and haze density conditions, it is
revelvant to synthetise hazy images based on this model because it
is at the core of all modern dehazing techniques. Hence, all those
methods should provide good results when the model is valid. As
an important and surprising contribution, our work however reveals
that, even for hazy images that perfectly fit the model, none of the
existing dehazing technique is able to accurately reconstruct the
original image from its hazy version. This observation has been
derived from a comprehensive evaluation of several state of the arts
dehazing approaches based on SSIM [28] and CIEDE2000 [29]
measures computed between the reference (haze-free image) and
the restored results produced by different dehazing techniques.

II. FROM DEPTH TO HAZY SCENES

In this section we first describe the optical model assumed for
hazy scenes and how we built our hazy dataset following this
model.

II-A. Optical Model of Hazy Scenes

A hazy medium is characterized by small particles that respond
to changes in relative humidity acting as small droplets nuclei when
the humidity is higher than a certain level. In such medium, the
light that is passing through it is attenuated along its original course
and is distributed to other directions. Mathematically this process
is expressed by the the image formation model of Koschmieder’s
model [17] that is widely accepted by all the recent dehazing
approaches. Based on this model, due to the atmospheric particles
that absorb and scatter light, only a certain percentage of the
reflected light reaches the observer. The light intensityI of each
pixel coordinatex, that passes a hazy medium, is the result of two
main additive components -direct attenuationD andairlight A :

I(x) = D(x) +A(x) = J (x) T (x) +A∞ [1− T (x)] (1)

whereJ is the scene radiance of a clear medium (haze-free image),
T is the transmissionalong the cone of vision andA∞ is the

1http://vision.middlebury.edu/stereo/data/scenes2014/
2http://cs.nyu.edu/∼silberman/datasets/nyudepth v2.html
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Fig. 2. Physical model of a hazy scene.

atmospheric light (a color constant that is computed globally for
the day-time dehazing).

The airlight component is linearly correlated with the distance
between the observer and the target object of the scene. The first
component of the model,direct attenuationD, describes how the
scene radiance is attenuated with the distance. The second one, the
airlight componentA represents the principal source of the additive
color shifting and is expressed as:

A(x) = A∞ [1− T (x)] (2)

whereT is the transmission and represents the relative fraction of
light able to cross the hazy medium between the observer and scene
surface, without being scattered.

Basically, the transmission mapT is directly related with the
depth of the scene and considering a homogeneous medium this
value is expressed as:

T (x) = e
[−β d(x)] (3)

whereβ is the medium attenuation (extinction) coefficient due to
the light scattering, whiled represents the distance between the
observer and the considered surface.

II-B. Using Depth to Synthesize Hazy Scenes

Depth is a key parameter in Equation 3. In general, the existing
datasets, are relatively limited in resolution, , realism and accuracy
of depth ground truth. To overcome these limitations the recent
work of Scharstein et al. [1] has introduced a novel dataset to
evaluate stereo algorithms. The dataset is generated using structured
light [30]. It represents an extension of the well-known Middlebury
dataset and contains 23 images (6-megapixel) of indoor scenes with
subpixel-accurate depth ground truth.

To deal withthe the lack of ground truth in occluded regions, for
the images of the Middlebury dataset we have employed the recent
weighted median filtering strategy introduced by Ma et al. [31].

Additionally, for a more comprehensive evaluation we have also
considered the recent NYU-Depth V2 data set [2]. This data set
includes various indoor scenes with RGB and depth maps captured
by Microsoft Kinect sensor. Missing depth values have been filled
in using the colorization scheme of Levin et al. [32]. While this
dataset is not as accurate as the Middlebury dataset it has the
advantage to be much larger (1449,640×480 images), with various
scenes.

Based on the optical model described above, we synthesize
the hazy scenes using the reference (haze-free) image and its

http://vision.middlebury.edu/stereo/data/scenes2014/
http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
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Fig. 3. Comparative results. The first two rows show the ground truth, depth map, hazy images and results derived from the Middleburry
dataset while the last three rows show results derived from NYU-Depth dataset.

corresponding depth map. First, for each image, the transmission
map is estimated based on equation 3 using the depthd and the
medium attenuation coefficientβ. β is set by default to 1, which
corresponds to moderate and homogenous haze. Additionally, for
the atmospheric light constantA∞ we assume a pure white value
[1 1 1], and generate the hazy images based on equations 1 and 3
as:

I(x) = J (x) e
[−β d(x)] +A∞

[

1− e
[−β d(x)]

]

(4)

III. EVALUATED TECHNIQUES

In this study, using our new dataset D-HAZY, we evaluate
perform an comprehensive validation comparing several state of
the art single image dehazing techniques and one well-known
enhancing method. For all tested algorithms we use the original
implementation provided by the authors. In the following we briefly
describe these techniques.

1. Tarel and Hautiere [8] introduce one of the first single dehazing
image approach. The method restores the visibility of hazy images
based on a filtering strategy. They assumes that the white-balance is
performed as a pre-processing step and estimates the transmission
as a percentage of the difference between the local average of
image and the local standard deviation of it. The transmission is
refined based on an extended version of the median filter. The
method has the advantage to be fast working for both color and
grayscale images.

2. He et al. [7], [18] proposes a novel prior the dark-channel
that is derived from the dark object of Chavez [33]. They explore
the statistics that in most of the local regions which do not cover
the sky, some pixels in general are characterized by very low values
in at least one color channel. These filtered pixels per patch are
used to estimate the haze transmission that is refined by an alpha
matting strategy. In our evaluation we employ the dark channel
prior refined based on the guided filter [34].

3. Meng et al. [21]introduce a regularization strategy that explores
effectively the boundary constraint on the transmission map. The
boundary constraint of the transmission is an extension of the
well-known dark channel prior [7]. The transmission is refined by
an optimization problem using the boundary constraint combined
with a weighted L1-norm based contextual regularization.

4. Ancuti and Ancuti [12] describe an effective a multi-scale
fusion strategy for single-image dehazing. They derive two inputs,
the first one is processed by white balancing the original hazy image
while the second input is obtained by subtracting for each pixel
the average luminance value of the entire image. Their important
features are filtered by computing several measures (weight maps)
that are blend in a multi-scale fusion strategy.

5. Fattal [13] introduces an approach that explores the color lines,
pixels of small image patches typically exhibit a one-dimensional
distribution in RGB color space. A first estimate of the transmission
map is obtained by computing the lines offset from the origin. The
final transmission map is produced based on a Markov random
field that refines the noise and other artifacts due to the scattering.

6. CLAHE (Contrast-limiting adaptive histogram equaliza-
tion) [35] is a well-known enhancing technique that restores the
contrast of the images. Desighned original for medical imaging
CLAHE extends the adaptive histogram equalization (AHE) by
applying a contrast limiting procedure. CLAHE splits the images
into contextual regions and employs the histogram equalization to
each of the region. To generate the CLAHE results we used the
original implementation of Matlab2014b.

IV. RESULTS AND DISCUSSION

Qualitatively, as expected, CLAHE [35] yields the less visually
compelling results (see Fig. 3). While the method of Tarel and
Hautiere [8] has the advantage to be computationally efficient, the



CLAHE Tarel Ancuti&Ancuti He et al. Meng et al. Fattal
SSIM CIEDE2000 SSIM CIEDE2000 SSIM CIEDE2000 SSIM CIEDE2000 SSIM CIEDE2000 SSIM CIEDE2000

Adirondack 0.728 11.257 0.851 15.195 0.890 10.820 0.858 10.775 0.882 11.106 0.753 16.057
Backpack 0.610 14.896 0.874 11.721 0.877 11.739 0.916 10.013 0.890 10.629 0.869 13.300
Bicycle1 0.768 18.067 0.876 8.843 0.899 12.669 0.882 15.296 0.766 23.259 0.809 16.448
Cable 0.499 25.054 0.649 26.469 0.617 24.249 0.710 16.379 0.668 18.895 0.743 13.684
Classroom1 0.609 11.205 0.799 23.315 0.886 11.839 0.911 6.315 0.872 9.834 0.870 20.742
Couch 0.613 11.519 0.716 25.640 0.854 13.262 0.908 6.736 0.862 10.775 0.779 22.941
Flowers 0.703 16.910 0.792 15.861 0.816 14.618 0.876 8.646 0.829 14.013 0.876 8.703
Jadeplant 0.549 26.364 0.687 20.187 0.632 28.415 0.689 19.223 0.699 21.418 0.631 32.390
Mask 0.682 14.781 0.875 11.754 0.860 11.603 0.888 9.703 0.828 14.875 0.886 11.823
Motorcycle 0.761 13.026 0.760 18.585 0.825 14.486 0.816 13.706 0.805 14.150 0.760 17.858
Piano 0.699 9.757 0.790 20.301 0.839 10.336 0.888 6.177 0.855 8.861 0.794 12.588
Pipes 0.628 16.898 0.678 24.285 0.715 19.193 0.779 9.643 0.751 11.541 0.681 15.463
Playroom 0.672 11.952 0.792 18.367 0.831 13.233 0.878 7.430 0.822 12.070 0.802 16.091
Playtable 0.717 9.418 0.831 19.060 0.842 9.118 0.907 8.028 0.865 14.119 0.813 11.519
Recycle 0.688 13.400 0.895 11.890 0.898 12.474 0.876 14.964 0.871 14.846 0.727 20.655
Shelves 0.754 7.681 0.883 15.202 0.929 7.181 0.890 11.649 0.889 14.413 0.871 12.400
Shopvac 0.669 17.659 0.726 29.251 0.788 19.268 0.827 16.287 0.821 17.569 0.758 32.504
Sticks 0.715 20.073 0.884 8.489 0.852 15.214 0.948 7.213 0.953 8.196 0.921 10.865
Storage 0.692 13.335 0.853 16.636 0.806 14.782 0.883 10.194 0.870 12.086 0.819 16.851
Sword1 0.607 20.070 0.862 12.097 0.835 14.809 0.910 9.660 0.892 10.436 0.865 13.822
Sword2 0.638 12.184 0.872 13.485 0.887 12.051 0.899 12.458 0.849 15.494 0.758 37.965
Umbrella 0.574 20.371 0.818 15.130 0.837 15.933 0.838 20.229 0.798 21.489 0.659 33.149
Vintage 0.711 14.907 0.858 8.236 0.856 14.612 0.917 10.049 0.780 21.796 0.858 15.794
Average 0.665 15.252 0.810 16.956 0.829 14.431 0.865 11.338 0.831 14.429 0.796 18.418

Table I. Quantitative evaluation. For each image derived from the Middleburry dataset we compute the SSIMand CIEDE2000 indexes
between the ground truth images and the enhanced results of the evaluatedtechniques.

results produced by this method look over-saturated with unpleasing
halo artifacts. Guided by several perceptual measures the method
of Ancuti and Ancuti [12] mitigates the introduction of structural
artifacts due to the multi-scale fusion strategy. Despite of its
euristic built-in concept, the method of He et al. [7] appears to
perform generally better than the other approaches both in color
and structure restoration. However, it can be observed that this
approach yields over-corrected results in white and gray regions
where no color channel is dominant. Since it also builds on the dark
channel prior, it is not surprising to observe that the approach of
Meng et al. [21] yields similar results as He et al. [7], with slightly
reduced artifacts, thanks to high-order filtering of the transmission
map. Whilst being quite effective on some images, the technique of
Fattal [13] regularly over-saturates some regions due to the color-
lines prior, and sometimes introduces unpleasing structural artifacts
around the edges.

Quantitatively, to validate the different techniques described
previously, we compare their outcome with the ground truth haze-
free images provided of the D-HAZY dataset. Since PSNR has been
proven to not be very effective in predicting human visual response
to image quality [28], we compute the well-known structural
similarity (SSIM) index [36] that compares local patterns of pixel
intensities that have been normalized for luminance and contrast.
SSIM index yields decimal values between -1 and 1, with maximum
value 1 for two identical images.

Moreover, because in image dehazing restoration of the color is
crucial and cannot be evaluated reliably by SSIM we employ an
additional evaluation metric. The difference between two colors is a
metric of high interest in color science. While the earlier measures
(e.g. CIE76 and CIE94) shown important limitations to resolve the
perceptual uniformity issue, CIE introduced CIEDE2000 [29], [37]
which defines a more complex, yet most accurate color difference

algorithm. CIEDE2000 yields values in the range [0,100] with
smaller values indicating better color preservation, and values less
than 1 corresponding to visually imperceptible differences.

Table I presents a detailed validation for the 23 Middleburry
dataset images and table II shows the average values of SSIM and
CIEDE2000 measured over the 1449 NYU-Depth images.

From these tables, we conclude that the method of He et al. [7]
performs the best in average. A second group of methods including
Meng et al. [21], Ancuti and Ancuti [12] and Fattal [13], perform
relatively well both in terms of structure and color restoration.

CLAHE Tarel Ancuti He Meng Fattal
SSIM 0.622 0.719 0.771 0.811 0.773 0.747
CIEDE2000 18.054 17.742 14.136 11.029 12.216 14.656

Table II . Quantitative evaluation of the 1449 images generated
based on the NYU-Depth dataset. In this table are shown the
average values of the SSIM and CIEDE2000 indexes over the entire
dataset (1449 images).

In general, all the tested methods introduce structural distortions
such as halo artifacts close to the edges, that are amplified in
the faraway regions. Moreover, due to the poor estimation of the
airlight and transmission map from the hazy image, some color
distortions may create some unnatural appearance of the restored
images. In summary, there is not a single technique that performs
the best for all images. The relatively low values of SSIM and
CIEDE2000 measures prove once again the difficulty of single
image dehazing task and the fact there is still much room for
improvement.
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